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Abstract—This paper presents a character-level sequence-to-
sequence learning method, RNNembed. This method allows the
system to read raw characters, instead of words generated by pre-
processing steps, into a pure, single neural network model under
an end-to-end framework. Specifically, we embed a Recurrent
Neural Network (RNN) into an encoder-decoder framework and
generate character-level sequence representation as input. The
dimension of input feature space can be significantly reduced as
well as avoiding the need to handle unknown or rare words in
sequences. In the language model, we improve the basic structure
of a Gated Recurrent Unit (GRU) by adding an output gate,
which is used for filtering out unimportant information involved
in the attention scheme of the alignment model. Our proposed
method was examined in a large-scale dataset on an English-
to-Chinese translation task. Experimental results demonstrate
that the proposed approach achieves a translation performance
comparable, or close, to conventional word-based and phrase-
based systems.

Index Terms—Sequence learning, neural machine translation,
recurrent neural network, character-level.

I. INTRODUCTION

Recent advances in video-sharing technologies are changing
the way that people view media and the media that people
view. For example, if you enjoy watching Bleach, Pretty Little
Liars, True Blood and many other television series, but are
not living in the broadcast countries and have no television,
you can try to view them online with a computer. Many
video-sharing websites, such as Tudou, Hulu, CastTV, and
10StarMovies, are providing such services for free without
requiring downloading. Popular television series, television
shows, and films are currently being released in this way
worldwide. However, most users do not possess the capability
to watch these videos without translation. At present, high-
quality subtitle translations are usually completed by self-
organized groups from video-sharing forums. However, the
translation process is both labor-intensive and error-prone. For
example, a group with four members requires approximately
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10 hours to translate a 90-minute film from English to Chinese.
Therefore, building machine translation applications is critical.

Among the major problems in natural language process-
ing, sequence-to-sequence learning, a fundamental problem,
has several important applications, such as machine transla-
tion [1][2], part-of-speed tagging [3], and dependency pars-
ing [4]. Without loss of generality, we take machine translation
as an example of sequence-to-sequence learning in this paper.
Machine translation has been extensively studied since the
1950s [5]. Dictionaries and rules for producing correct word-
order were originally used for translation systems. Many
models aided by knowledge of language were developed in the
following years. In the 1990s, statistical methods relying on
corpora of translation examples began to emerge [5]. Despite
certain rule-based pieces remaining in machine translation
systems, these statistical methods became dominant because of
the availability of large corpora, toolkits for performing basic
translation processes, and increased computational efficiency.

Initially, neural networks were utilized for natural language
processing [6]. Bengio et al. then used neural networks to
learn a statistical model of the distribution of word sequences,
and trained the model on a large scale [7]. Recently, neu-
ral networks have attracted increased attention in machine
translation [2][8][9]. These newly developed neural network-
based methods are often called neural machine translation,
which aims at building and training a single, large neural
network that reads a sentence and outputs a correct translation.
Regarding neural machine translation models, the encoder-
decoder framework receives much focus in the extant litera-
ture [2][8][10]. In this framework, an encoder neural network
reads a source sentence and encodes it into a fixed-length
vector. A decoder then produces a translation by decoding
the fixed-length vector into a sentence of variable length. The
whole system, which includes the encoder and the decoder
for a language pair, is trained to maximize the conditional
probability of a correct translation given a source sentence.
However, since the encoder-decoder framework needs to be
able to compress all of the necessary information of a source
sentence into a fixed-length vector, difficulty may arise for
the neural network in handling long sentences [1]. In order
to address this issue, Bahdanau et al. [1] recently introduced
RNNsearch, an extension to the encoder-decoder model, which
embeds an attention mechanism into the learning process. The
proposed model generates a word in a translation by (soft-
)searching for a set of positions in a source sentence where
the most relevant information is concentrated. The model then
predicts a target word based on the context vectors associated
with these source positions and all of the previously generated
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target words. Empirical comparison has demonstrated that this
dynamic alignment in RNNsearch is capable of producing
superior performance over the traditional encoder-decoder
approach [11].

Despite the encouraging results achieved by RNNsearch
being representative, a common issue with these models is
that they usually rely on a tokenization process before model
training. A shortlist of the most frequently occurring words
in each language is then used to train the models. Any word
not included in the shortlist will be mapped to a special token
(i.e., [UNK]), and thus the systems cannot output complete
translations to some extent. In order to address these special
tokens, Luong et al. attempted to employ a post-processing
step that translates every out-of-vocabulary (OOV) word using
an additional dictionary [12]. On the other hand, Jean et
al. introduced a method based on importance sampling that
allows the translation system to use a large target vocabulary
without increasing training complexity [11]. However, these
methods usually rely on tokenization as a pre-processing step
to produce the vocabulary, and require extra computational
effort to cope with the special tokens remaining in target sen-
tences. In this paper, we develop a character-level sequence-
to-sequence learning method for neural machine translation,
in particular for subtitle translation. The translation space for
short-length sequences, such as subtitles, is smaller than that
for normal sentences, which makes our proposed character-
level translation model possible. The proposed method, which
we refer to as RNNembed, allows us to input quantized
characters into the translation system, instead of using a
vocabulary of common words tokenized in the pre-processing
step. We show that subtitle understanding can be handled by
a single neural network system without artificially embedding
knowledge about words, phrases, or any other syntactic or
semantic structures associated with a language. Specifically,
for the task of English-to-Chinese translation, we embed a Re-
current Neural Network (RNN) [13] into the encoder-decoder
approach, in which the inputs are quantized English characters
and the outputs are Chinese characters. The most apparent
feature of our proposed method, RNNembed, is that it does not
require knowledge of words. This renders a usual tokenization
unnecessary. All previous works start with words instead of
raw characters, thus they usually require a large vocabulary
and often make special tokens remain in target translation
results. We trained our model in a large-scale subtitle dataset
collected from the Internet. Experimental results suggest that
the proposed approach achieves, with a single neural network
model, a translation performance comparable, or close, to
conventional word-based and phrase-based systems.

The remaining sections of this paper are organized as
follows. A character-level encoder-decoder framework is de-
scribed in Section II, where we present each module under the
framework in detail. The model training procedures and im-
plementation details are presented in Section III. Experimental
results are demonstrated in Section IV. The paper ends with
conclusions and future work propositions in Section V.

II. CHARACTER-LEVEL SEQUENCE-TO-SEQUENCE
LEARNING

A. Character-Level Encoder-Decoder Framework

Neural machine translation has shown great success in
recent years [7]-[12]. In the field of neural machine transla-
tion, most previous studies worked under the encoder-decoder
framework, which learns to encode a variable-length source
sentence into a fixed-length vector representation c and to
decode a vector into a variable-length target sentence [8].
Once the network structures of the encoder and the decoder
in this typical end-to-end framework are designed, given
sentence pairs an optimal translation model can be learned
by a training process. In order to maintain the word order in
the source and target sentence, the input or output sequence
needs to be processed in time order. The notation “<eol>”
is usually used for representing the end of a sentence, and
will determine when we stop predicting the next word in a
sequence. Therefore, the entire translation model constitutes
a typical end-to-end learning process. The model is capable
of encoding all of the information of an input sentence into
a fixed-length vector c and to predict each word in an output
sentence in time order.

For clarity, similar to [1], we briefly describe the under-
lying framework, called RNN Encoder-Decoder [2][8], upon
which we build a new architecture that allows character-level
sequence input without requiring knowledge of words.

In the encoder-decoder framework, given a source sentence,
a sequence of vectors x = (x1, x2, ..., xTx), an encoder learns
to encode the input sequence into a vector c. An RNN is used
in the form of

ht = f(xt, ht−1) (1)

and
c = q({h1, h2, ..., hTx}), (2)

where ht ∈ ℜn is a hidden state at time t; c is a vector
generated from the sequence of the hidden states; Tx is the
length of the input sentence; f and q are nonlinear functions
that can be represented by long short-term memory (LSTM)
units [2]. The decoder is trained to predict the next word
yt considering the context vector c and all of the previously
predicted words {y1, y2, ..., yt−1} . The final translation can be
obtained by decomposing the joint probability into the ordered
conditionals in the form of

p(y) =

Ty∑
t=1

p(yt|{y1, y2, ..., yt−1}, c), (3)

where y = (y1, y2, ..., yTy ), and Ty denotes the length of the
output sentence. Moreover, each conditional probability using
an RNN can be modeled as

p(yt|{y1, y2, ..., yt−1}, c) = g(yt−1, st, c), (4)

where g is a nonlinear, potentially multi-layered, function, and
st is the hidden state of the RNN. It is worth noting that
other architectures, such as a hybrid of an RNN and a de-
convolutional neural network, can also be used [9].

However, this basic framework needs to be specified with
the network structure on a real-world translation task. For
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Fig. 1. Character-level sequence-to-sequence encoder-decoder framework.

example, this simple encoder-decoder framework encodes all
of the necessary information of a source sentence into a fixed-
length vector c. However, this may cause the difficulty of han-
dling long sequences [1]. In order to overcome this challenge,
Bahdanau et al. [1] recently introduced an extension model,
RNNsearch, which embeds an attention mechanism into the
learning process. Empirical comparison has demonstrated that
RNNsearch is able to produce better performance than the
traditional encoder-decoder approach [11]. From a system-
atic perspective, the whole network can be roughly divided
into four sections according to their functions, i.e., word
vector representation, language model, word alignment, and
target sentence generation. In line with the encoder-decoder
framework, in this paper we propose a new network model
that embeds two RNNs into the word vector representations
of source sentences and target sentences, respectively. An
overall architecture of our model is shown in Fig.1. Our
model enables us to input character-level sequences and to
avoid the use of special tokens for the representation of OOV
words. Specifically, we used an RNN to project the input
sequence, x = (x1, x2, ..., xTx), and the output sequence,
y = (y1, y2, ..., yTy ), into feature space (ex1 , ex2 , ..., exTx ) and
(ey1 , ey2 , ..., eyTy ), respectively. It is worth noting that the
input/output feature space generated from character-level se-
quences is of low dimension in comparison to the word-
level feature space used in traditional models. Here, similar
to RNNsearch [1], we used a bidirectional RNN to learn an
encoder and employed the attention scheme for dynamic word
alignment.

B. Character-Level Sequence Representation Using RNN

Previous studies usually use a preprocessing step to extract
words from source sequences and to build a large vocabulary

that helps to transform an input sequence into fixed-length vec-
tors using the one-hot scheme which refers to a vector where
the component values are only those with a single high (1) bit
and all the others low (0). However, due to the sparsity and
high dimension of this word-level representation, the used vo-
cabulary cannot comprise all of the words occurring in the data
set. Thus, these OOV words are often replaced by a special
token ([UNK]). In order to obtain the final translation results,
a post-processing step is required to handle those UNKs in
the output sequence [12]. In this paper, we develop a method,
RNNembed, for character-level sequence representation using
RNN. This method offers a number of desirable features. First,
it allows the system to read raw characters. In other words, we
do not require any prior knowledge about words, phrases, or
other syntactic structures associated with a language. Second,
since the number of characters in a language is usually limited,
the feature space of the input/output sequence in our method
is of low dimension. Third, RNNembed avoids using a post-
processing step to handle special tokens in output sequences.
Finally, with RNNembed, the sequence-to-sequence learning
system can be trained and implemented by a unified neural
network framework without using any pre-processing or post-
processing procedures.

Given an input vector xt at time t, a hidden state ht in
an RNN can be calculated by Eq.1. An output vector with a
one-hot representation at time t is modeled as

p(xt,j = 1|xt−1, ..., xt) =
exp(wjht−1)

K∑
j′=1

exp(wj′ht−1)

, (5)

where wj (j = 1, 2, ...,K) is a row of the weight matrix W .
Thus, the probability that a sequence of vectors x occurs can
be obtained by the following joint probability

p(x) =
T∏

t=1

p(xt|xt−1, ..., x1). (6)

In this process, the hidden unit hT at the last time step T can
be seen as a vector representation of the whole input sentence,
rather than a word vector representation. However, if we keep
each hidden unit ht at time t and reset the hidden state to
zero before inputting it to the next hidden unit ht+1, a word
vector sequence (h1, h2, ..., hT ) can be achieved. In fact, this
is equivalent to the case in which we set ht = f(xt). In other
words, it is a non-linear transformation on the basis of a one-
hot representation of a sequence. However, in line with this
concept, an RNN can be used for character-level sequence
representation if we choose the correct time t to reset the
hidden state of ht to zero.

From the natural language processing perspective, “reset to
zero” can be regarded as word segmentation, which is exactly
required by the character-level input sequence. Actually, this
functionality can be implemented by adding a gate into an
RNN. The gate is used for outputting the segmented word-
vector and for controlling the context information of the last
word not to be considered at the current time (i.e., “reset to
zero”). Motivated by this, we design the RNN with a gate
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Fig. 2. The RNN structure for character-Level sequence representation.

TABLE I
AN EXAMPLE OF CHARACTER-LEVEL REPRESENTATION WITH RNN (<>

REPRESENTS THE BLANK CHARACTER)

xi w h y <> n o t ?
hi h1 h2 h3 h4 h5 h6 h7 h8

wi 0 0 1 1 0 0 1 1
exi 0 0 h3 h4 0 0 h7 h8

Updated hi h1 h2 0 0 h5 h6 0 0

layer in the form of

hi = tanh(Whxi + Uhhi−1), (7)

w̃i = σ(Ww̃xi + Uw̃hi−1 + Vw̃wi−1), (8)

wi =

{
0, ifw̃i,1 ≥ w̃i,2

1, ifw̃i,1 < w̃i,2
, (9)

exi = wihi, (10)

hi ← (1− wi)hi, (11)

where, xi ∈ ℜKx (Kx is the vocabulary size generated
from the source language, i.e., the number of characters in
English in this paper); σ is the sigmoid activation function;
Wh ∈ ℜm×Kx , Uh ∈ ℜm×m, Ww̃ ∈ ℜ2×Kx , and Uw̃ ∈ ℜ2×m

are the weight matrices; and m is the dimension after word
embedding. Here, hi is the output of the hidden unit of an
RNN, and h0 = 0. wi can be regarded as a gate, which
is used to determine whether or not we output hi at time
i or not. Thus, given a source sequence, we can segment the
characters dynamically, such that a certain number of “words”
are formulated in a principled manner. hi is updated by Eq.11
in order to ensure that exi will not include the information of
previous characters. Fig.2 shows the architecture of our pro-
posed character-level sequence representation using an RNN.
For clarity, we give an example to illustrate the process of our
method, as shown in Table I. Here, the source sequence x is
“why not?”. The length of this sequence at the character level
is Tx = 8. The desirable segmentation result should be “why|
|not|?”. Then, the output produced by RNN will be represented
by ex = (0, 0, h3, h4, 0, 0, h7, h8) (here, the space is treated as
a word). It is worth noting that the gate output wi of the last
character is always set to 1. Moreover, in order to maintain
the length Tx of the source sequence, we did not choose to
delete the components with value 0 in ex.

Similar to the above process, we calculate the word vector
ey given a target sequence in the decoder as shown in Fig.1.
The target sequence is represented by y = (y1, y2, ..., yTy ),
yi ∈ ℜKy , where Ky is the vocabulary size generated from
the target language (i.e., the number of characters in Chinese
in this paper). In comparison to the distributed representa-
tion [14], even though the training process of this word vector
generation method based on an RNN is slightly complicated,
the automated word segmentation featured by our proposed
method is very desirable. Distributed representation relies on
projecting a high-dimensional word vector formulated by the
bag-of-words model onto a low-dimensional feature space.
The projection does not consider input sequences in time order
at all. By contrast, our method reads a sequence in time order
and produces a low-dimensional word vector by segmenting
characters dynamically.

C. Language Model

The earliest work on language models is the Neural Network
Language Model (NNLM) introduced by Bengio et al. [7].
This model aims at predicting the current word by using
the information of previous words. In addition to NNLM,
an RNN can also be used for building a language model,
because the hidden units in an RNN can be utilized for
learning historical data. One of the popular used RNN struc-
tures is LSTM [15], which is capable of learning long-term
dependencies. It usually outperforms the traditional Hidden
Markov Model (HMM) in the fields of speech recognition [16],
machine translation [2][8], etc. There are many popular LSTM
variants, showing different performances on certain tasks [17].
In this paper, we employed a slightly more dramatic variation
on the LSTM, the Gated Recurrent Unit (GRU), introduced by
Cho et al. [8]. The resulting model is simpler than standard
LSTM models, and has been increasing in popularity. On the
basis of GRU, we improved the basic structure of GRU by
adding an output gate.

All RNNs have the form of a chain of repeating modules
of neural network. In standard RNNs, this repeating module
has a very simple structure, such as a single tanh layer.
LSTMs also possess this chain-like structure, but the repeating
module has a different structure. GRU merges the cell state and
hidden state by integrating the “forget gate” and “input gate”
into a single “update gate”. However, this combination may
affect the attention scheme adopted in the alignment model.
Hence, we design an improved GRU with an additional output
gate without overshadowing the basic structure of GRU. Our
improved GRU includes two control gates and an output gate.
Specifically, the language model is generated by

z⃗i = σ(W⃗ze
x
i + U⃗z g⃗i−1), (12)

r⃗i = σ(W⃗re
x
i + U⃗r g⃗i−1), (13)

⃗̃gi = tanh(W⃗ge
x
i + U⃗g[r⃗i ◦ g⃗i−1]), (14)

g⃗i = (1− z⃗i) ◦ g⃗i−1 + z⃗i ◦⃗ g̃i, (15)

s⃗i = σ(W⃗se
x
i + U⃗ss⃗i−1) ◦ tanh(g⃗i), (16)
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where, exi ∈ ℜm is the output vector for sequence representa-
tion using an RNN (see Section II-B); W⃗z, W⃗r, W⃗g ∈ Ren×m,
U⃗z, U⃗r, U⃗g , and U⃗s ∈ Ren×n are the weight matrices; g⃗0 = 0⃗;
s⃗0 = 0⃗; z⃗i represents the update gate, which allows each
hidden state to maintain the activated state in the previous
steps; r⃗i is a reset gate, which controls what and how much
information needs to be reset from the previous state; and
s⃗i is an output gate, which is used to filter out unimportant
information involved in the attention scheme of the alignment
model. Thus, each hidden state has an update gate, reset gate
and output gate, which capture the memory dependencies in
different time scales. For clarity, Fig.3(b) describes the LSTM
diagram that we used in this paper in comparison to the
original GRU shown in Fig.3(a).

(a)

(b)

Fig. 3. Network structure for language model: (a) the original GRU; (b) our
improve GRU.

Similar to RNNsearch [1], we used a bidirectional
RNN (BiRNN), which has been successfully applied in
speech recognition. A BiRNN includes forward and back-
ward RNNs. The forward RNN reads the input sequence
(x1, x2, ..., xTx) and calculates a sequence of forward hidden
states (s⃗1, s⃗2, ..., s⃗Tx). The backward RNN reads the sequence
in the reverse order, resulting in a sequence of backward
hidden states (

←
s1,

←
s2, ...,

←
sTx). By concatenating the forward

hidden state s⃗i and the backward one ←s i, i.e. si = [s⃗Ti ;
←
s
T

i ]
T,

we obtain the hidden layer annotating the source sequence.
In the decoder, we can use a similar GRU to obtain s′i, which

contains the annotation information of the target sequence.
However, it is not required to add an output gate (see Eq.16),
as this function will be implemented in the target sequence
generation process. In order to connect the hidden states si
and s′i, a context vector ci is used to indicate the attention

scheme in the encoder-decoder mapping process. We explain
in detail how the context vectors are computed in the alignment
model. The language model in the decoder is given by

z′i = σ(W ′
ze

y
i−1 + U ′

zs
′
i−1 + C ′

zci), (17)

r′i = σ(W ′
re

y
i−1 + U ′

rs
′
i−1 + C ′

rci), (18)

s̃′i = tanh(W ′
se

y
i−1 + U ′

s[r
′
i ◦ s′i−1] + C ′

sci), (19)

s′i = (1− z′i) ◦ s′i−1 + z′i ◦ s̃′i, (20)

where eyi ∈ ℜm is the word embedding vector for the target
language; W ′

z,W
′
r,W

′
s ∈ ℜn×m, U ′

z, U
′
r, U

′
s ∈ ℜn×n, and

C ′
z, C

′
r, C

′
s ∈ ℜn×n′ are weights; and s′0 = tanh(Vs

←
s1).

D. Alignment Model

In a typical RNN encoder-decoder framework, the encoder
is responsible to encode all of the information in the source
sentence into a fixed-length vector c and to decoder the vector
into a variable-length target sentence. Recent studies, e.g.,
RNNsearch [1], have shown that a soft alignment is capable of
achieving significantly improved translation performance over
the basic encoder-decoder approach. The alignment model
introduced in RNNsearch encodes the input sentence into
a sequence of vectors, ci, and chooses a subset of these
vectors adaptively while decoding the translation. In line with
RNNsearch, we used a similar method to define the context
vector ci in the form of

aij = V T
a tanh(Was

′
i−1 + Uasj), (21)

αij =
exp(aij)

Tx∑
k=1

exp(aik)

, (22)

ci =

Tx∑
j=1

αijsj , (23)

where, sj ∈ ℜ2n is a hidden state generated by the language
model for the source sequence; s′i−1 ∈ ℜn is a hidden state
for the target sequence; and Wa ∈ ℜn′×n, Ua ∈ ℜn′×2n, and
Va ∈ ℜn′ are weight matrices. It is worth noting that, unlike
in traditional machine translation, the alignment variable aij is
not considered to be a latent variable. Instead, it is an energy
function, which reflects the importance of the annotation sj
with respect to the previous hidden state s′i−1 in deciding
the next s′i and generating yi. This implements a scheme of
attention in the decoder. The decoder decides which parts of
the source sentence to pay attention to [1]. Here, the design
of the alignment model requires considering the lengths of
sentence pairs, i.e., Tx and Ty . We usually need Tx × Ty

operations. In order to minimize the computational burden,
we can calculate Uasj in advance, as it does not rely on time
i.
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Algorithm 1 Character-level learning model
Input: x = (x1, x2, ..., xTx).
//Encoder
h̃0 ← 0, w⃗0 ← 0, s⃗0 ← 0
for x⃗t in x = (x1, x2, ..., xTx) do

e⃗xt = embed(⃗ht−1, w⃗t−1, x⃗t), s⃗t = language(s⃗t−1, e⃗
x
t )

endfor
←
h0 ← 0,

←
w0 ← 0,

←
s 0 ← 0

for ←xt in (xTx , xTx−1, ..., x1) do
←
e
x

t = embed(
←
ht−1,

←
wt−1,

←
xt),

←
s t = language(

←
s t−1,

←
e
x

t )
endfor
s = concatenate(s⃗,

←
s )

//Decoder
s′0 ← tanh(Vs

←
s 1), e

y
0 = 0

while yi−1 ̸=′< eol >′ do
ct = alignment(s′t−1, s), st = language(st−1, ct, e

y
t−1)

yt = output(s′t, ct, e
y
t−1), e

y
t = embed(ht−1, wt−1, yt)

endwhile
Output: y = (y1, y2, ..., yTy )

E. Target Sequence Generation

We have described three important components in our
character-level sequence-to-sequence learning, i.e. character-
level sequence representation, language model, and alignment
model, in previous sections. The whole process of translating
a source sequence x = (x1, x2, ..., xTx) into a target sequence
y = (y1, y2, ..., yTy ) has been shown in Fig.1. However, this
neural translation model is only an unsupervised, forward
learning process. In order to learn a well-established trans-
lation model, we need a target sequence generation module
to train language pairs in a large-scale data set. This module
will be embedded into the decoder and help to generate a
target sequence y. Given the word vector eyi−1 generated in
the previous step, the hidden state s′i in the decoder, and
the context vector ci, at time i, the decoder calculates the
probability that generates yi in the form of

t̃i = σ(Wte
y
i−1 + Uts

′
i + Ctci), (24)

ti = max{t̃i,2j−1, t̃i,2j}, (j = 1, ..., l), (25)

p(yi|eyi−1, s
′
i, ci) = yTi softmax(Wpti), (26)

where Wt ∈ ℜ2l×m, Ut ∈ ℜ2l×n, Ct ∈ ℜ2l×n′ , and Wp ∈
ℜKy×l are weight matrices. In Eq.25, we used a maxout [18]
unit, which can be seen as a nonlinear activation function. A
softmax function [19] is used to generate the probability that
yi is the target output character.

For clarity, we summarize the forward process of our pro-
posed character-level sequence-to-sequence learning algorithm
in Algorithm 1. The embed(.) function denotes the character-
level sequence representation using RNN as shown in Sec-
tion II-B; the language(.) function denotes the calculation
process in the language model as described in Section II-C;
the concatenate(.) function indicates that we concatenate two
vectors together; the alignment(.) represents the process of
alignment model in Section II-D; and the output(.) function
denotes the target sequence generation module as introduced
in Section II-E.

TABLE II
STATISTICS OF WORD-BASED SEQUENCE LENGTH

Length of Training Training Test Test
Sequence Set (EN) Set (ZH) Set (EN) Set (ZH)

1∼9 1270522 1366950 4226 2433
10∼19 520850 432225 774 2421
20∼29 4921 820 - 145
30∼39 3137 5 - 1
40∼49 541 - - -
50∼59 29 - - -

III. MODEL LEARNING AND EXPERIMENTAL SETTINGS

A. Data Set and Preprocessing

In order to build a well-established neural sequence-to-
sequence translation model, it is essential to compile a large-
scale data set for training. Regarding the task of English-
to-Chinese subtitle translation, there is no public data set
at present. Fortunately, there are several online websites,
which provide high-quality subtitle translations offered by
many volunteers. To train our proposed model, we collected
the subtitles of 16,987 movies or television series from the
Internet. Each subtitle file is in the format of SRT (Sub-
ripper). We extracted 13,717,380 English-Chinese sequence
pairs in total from these subtitle files. Due to computation-
al capacity, we randomly selected 1,800,000 language pairs
for training and 5,000 ones for testing. Intuitively, sequence
length constitutes an important factor that affects translation
performance. The data set statistics with respect to sequence
length for training and test are summarized in Table II and
Table III. Table II shows the statistics of sequence length
based on word-level sequence representation. We performed
word segmentation for Chinese with the Stanford NLP toolkit,
and English tokenization with the tokenizer from Moses1.
In training of other models compared with our method, we
limited the source and target vocabulary to the most frequent
30,000 words in English and Chinese. All of the OOV words
were mapped to a special token UNK. Table III summarizes
the statistics of sequence length based on the character-level
sequence representation used for our proposed model. Our
model accepts a sequence of encoded characters as input. For
English/Chinese sequences, they are segmented by English
letters/Chinese characters, punctuation characters, or other
characters. The vocabulary used for English and Chinese se-
quences consists of 137 English characters and 5,133 Chinese
characters, covering all of the occurred characters of the two
corpora, respectively. In comparison to the traditional word-
level sequence representation, the dimension of input sequence
based on our character-level representation has been reduced
in 219 times for English sequence and 5.8 times for Chinese
sequence, respectively. Moreover, there is no demand for post-
processing steps, as done in [12], to handle the OOV words.

B. Model Training

1) Model Size: For all of the models used in this paper,
the word embedding dimensionality m is 1,000, the length

1http://www.statmt.org/moses/
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TABLE III
STATISTICS OF CHARACTER-BASED SEQUENCE LENGTH

Length of Training Training Test Test
Sequence Set (EN) Set (ZH) Set (EN) Set (ZH)

1∼9 97169 137409 219 2349
10∼19 256970 356670 664 2625
20∼29 417398 569065 1193 26
30∼39 456448 615481 1361 -
40∼49 339007 454852 1004 -
50∼59 181520 242359 462 -
60∼69 48107 63980 91 -
70∼79 3052 4424 5 -
80∼89 298 417 1 -
90∼99 26 31 - -

100∼109 5 7 - -

of hidden states s or s′ in the language model is 2,000, the
number of hidden units in the alignment model n′ is 2,000,
and the size of the maxout hidden layer in the target sequence
generation module l is set at 1,000.

2) Parameter Initialization: We initialized the recurrent
weight matrices Uh, Uw, Vw, U⃗z , U⃗r, U⃗s, U⃗w,

←
Uz ,

←
Ur,

←
Us,

←
Uw, U ′

z , U ′
r, and U ′

s as random orthogonal matrices. Here,
we firstly generated associated random matrices, and then
used the SVD (Singular Value Decomposition) to produce
random orthogonal matrices. For the weight matrices in the
alignment model, Wa and Ua, we initialized them by sampling
each element from the Gaussian distribution of mean 0 and
variance 0.0012. All of the elements of Va and all of the bias
vectors were initialized to zero. Any other weight matrices
were initialized by sampling from the Gaussian distribution of
mean 0 and variance 0.012.

3) Parameter Learning: The Stochastic Gradient Descent
(SGD) algorithm was used for model training. We used
Adadelta [1] to automatically adapt the learning rate of each
parameter (ε = 10−6 and ρ = 0.95). We explicitly normalized
the L2-norm of the gradient of the cost function each time to
be at most a predefined threshold of 1, when the norm was
larger than the threshold [20]. Each SGD update direction was
computed with a minibatch of 20 sequences.

Our model was developed in an open-source toolkit,
Theano, and we used a GPU (Graphics Processing Unit) to
speed up the training process. All of the simulations were
performed on a PC with Intel Core i7-4790K, 4.00GHz, and
4 GB memory.

IV. EXPERIMENTAL RESULTS

A. Evaluation Measure

In order to evaluate the performance of our method, we
adopted a widely used evaluation metric, case-insensitive
four-gram NIST BLEU (Bilingual Evaluation Understudy)
score [21], which is defined in the form of

BLEU = BP · exp(
N∑

n=1

wn log(pn)), (27)

where wn is the weights of co-occurred n-grams, pn represents
the n-gram precisions, and BP denotes the length-based

brevity penalty. The detailed calculation of BLEU can be
found in [21]. It is important to note that the more reference
translations per sentence there are, the higher the BLEU score
is.

B. Compared Models

We compare our method, RNNembed, with two compet-
itive models: Moses [22] and RNNsearch [1]. The open
source phrase-based translation system Moses (with default
configuration) is a well-established conventional statistical
machine translator. The word alignment is developed with
GIZA++ [23]. We used the SRI Language Modeling Toolk-
it [24] to train a four-gram language model with modified
Kneser-Ney smoothing on the target portion of the training
data. RNNsearch is used as the neural machine translation
baseline, because it represents the state-of-the-art neural ma-
chine translation method. We used the same parameter settings
and the training procedures for RNNsearch with our model.
In fact, the traditional RNNsearch can read characters as
input. Therefore, we implemented two versions of RNNsearch,
a word-level RNNsearch (denoted as RNNsearch (word))
and a character-level RNNsearch (denoted as RNNsearch
(character)). For comparison, we also evaluated another two
versions based on our proposed model, RNNembed-1 and
RNNembed-2. RNNembed-1 represents the model that we
used with the same structure as RNNsearch, except that
an output gate is newly added into the GRU (see Eq.16).
RNNembed-2 indicates that we only use the character-level
sequence representation with RNN without adding the output
gate in the GRU. We take RNNembed as the final system that
integrates character-level sequence representation with RNN
and the improved GRU into a unified framework.

C. Quantitative Results

The comparative results of different models are given in
Table IV. Unsurprisingly, the system Moses produces the
highest BLEU score over other methods, as it is a well-
established system by human experts. At present, all of the
neural machine translation methods only achieve comparable
performance over Moses, which has been observed by many
researchers on different machine translation tasks [1][11].
RNNsearch based on word-level input is around 1.4 points be-
hind Moses in BLEU, on average. It is worth noting that word-
based RNNsearch delivered slightly better performance than
Moses when only the sentences having no unknown words
(UNK tokens) were evaluated on the task of English-to-French
translation [1]. However, in a real-world translation task, UNK
tokens must appear in many sequences if we use a small
vocabulary without post-processing the rare words. As shown
in Table IV, character-based RNNsearch performs the worst
in comparison to the other methods, which indicates that the
traditional RNNsearch is not suitable for reading characters as
input. However, our proposed model, RNNembed, is designed
especially for inputting character-level sequences. RNNembed
can already achieve slightly better performance than word-
based RNNsearch and deliver results comparable to Moses.
It is also observed that RNNembed is able to produce better
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TABLE IV
COMPARATIVE RESULTS OF DIFFERENT MODELS

System BLEU BP P1 P2 P3 P4

Moses (word) 26.59 0.980 55.6 32.7 21.4 13.9
RNN-search (word) 25.21 0.814 58.4 36.5 25.6 16.8

RNNembed-1 (word) 22.65 0.763 58.3 34.9 23.7 16.1
RNN-search (character) 21.21 1 38.7 25.0 17.2 12.1

RNNembed-1 (character) 22.2 1 39.8 26.0 18.2 13.0
RNNembed-2 (character) 22.25 1 40.0 26.1 18.2 12.9
RNN-embed (character) 25.29 1 42.4 29.0 21.2 15.7

Fig. 4. Performance of RNNembed against length of sequences.

results in comparison to its two variants, i.e., RNNembed-1
and RNNembed-2.

D. Study on Sequence Length

On various translation tasks, the sequence length is critical
for affecting the performance of different learning methods.
In order to further investigate the performance of RNNembed
with respect to the length of a given sequence, we divided the
test set into nine subsets according to the length of sentences
with 1∼9, 10∼19, ..., 80∼89. The results of RNNembed
on these 10 subsets are summarized in Fig.4. The average
length of sentences based on word-level representation is 7,
while the average length of character-level sentences is 32.
It is observed that RNNembed achieves the best performance
over sequences with lengths from 20 to 29. Along with the
increase of sentence length, the BLEU score drops quickly.
This indicates the difficulty for RNNembed to handle lengthy
sequences, which can constitute an interesting problem for
future work.

E. Examples

Apart from the objective evaluation based on quantitative
results, we selected some translation examples to further
investigate the performance of our method. Here, RNNsearch
and RNNembed were trained by character-level sequence rep-
resentation. We also compared RNNembed with two popular
used translate softwares in industry1, i.e. Google Translate
and Youdao Translate2. Table V shows the translation results
of two short sentences. Basically, RNNembed, RNNsearch
and the two industrial softwares are able to translate these
sentences correctly. But RNNembed is capable of adding
more “emotions” into the translation in comparison to other

1All the results were retrieved on 25 Nov. 2015.
2A popular used machine translation software in China,

http://fanyi.youdao.com/

TABLE V
TRANSLATION EXAMPLES OF SHORT SENTENCES

Source sequence Wow. I like it. I love you.
Reference 我喜欢 我爱你
RNN-search 我喜欢这样的样子 我很喜欢你们
RNN-embed 我真喜欢这东西 我爱死你们了
Google Translate 哇。我喜欢。 我爱你
Youdao Translate 哇。我喜欢它。 我爱你

TABLE VI
TRANSLATION EXAMPLES OF RELATIVELY LONG SENTENCES

Source sequence Look, man, you don’t get to do anything This one means a lot to me.
Reference 兄弟 你什么都不需要做 这个奖杯意义重大
RNN-search 听着 你不必要做任何事情的事情 你做不了 这意味这我的意思是我的意见了
RNN-embed 听着 老兄 你什么都不用做 这意味着 对我很重要
Google Translate 你看，男人，你不应该尽。 这其中意味着很多给我。
Youdao Translate 男人，你不需要做任何事。 正这个对我来说意味着很多。

TABLE VII
FAILURE EXAMPLE

Source sequence Until our mission is complete you will have no names.
Reference 直到任务结束前 你们都没有名字
RNN-search 直到我们的家人都不知道你们的名字是什么意义的时候我们的
RNN-embed 直到我们的任务结束 你们完全不知道名字没有告诉你
Google Translate 直到我们的任务完成后，你不会有任何名称。
Youdao Translate 直到我们的任务是完成你将没有名字。

methods. Moreover, we summarized the translation results of
three relatively long sentences in Table VI and Table VII. It
is worth noting that long sentences usually will not appear in
subtitles. This can be observed in dataset statistics as shown in
Table II and Table III. For the first two sentences shown in VI,
the result using RNNembed is closer to the reference in the
test set in comparison to other methods. For the third sentence
shown in VII, all the methods can not translate it well. But,
obviously, the result delivered by RNNembed is more readable
than that of RNNsearch.

V. CONCLUSION

In this paper, we proposed a character-level sequence-to-
sequence learning method, RNNembed. This method reads
quantized characters into the translation system, instead of
using a predefined vocabulary with a limited number of words.
On the task of English-to-Chinese subtitle translation, we
embedded an RNN into the encoder-decoder approach for
generating character-level sequence representation. We also
improved the GRU in the language model of the encoder. The
proposed model was examined in a large-scale subtitle dataset
compiled by ourselves. Experimental results show that RN-
Nembed is able to achieve a translation performance compara-
ble to the most competitive word-based model, RNNsearch [1],
and can deliver a result close to the well-established phrase-
based system, Moses. The benefit of RNNembed is rendering
a usual tokenization unnecessary, resulting in there being no
need to handle unknown or rare words. To the best of our
knowledge, the present study constitutes a pioneering work
on building a pure neural network model for sequence-to-
sequence learning by reading raw characters as input. One
limitation of our method lies in sequence length, that is, it
favors short sequences. One future challenge will be identify-
ing ways to better cope with lengthy sequences. A possibility
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for improving our model is to develop a deep-structured RNN
for generating word vectors. It is potential to visualize the
word segmentation or character clustering results from our
model, and is worthy of further investigation. It would also
be interesting to extend our work to automated answering
systems [25].
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